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AbstrAct

This paper adopts the extreme value and VaR approach to inves-

tigate the amount of rice damaged due to extreme events and 

analyzes the collective risk model as a feasible scheme for esti-

mating annual aggregate losses. The results show that the annual 

frequency of rice damage caused by typhoons is shown to fit 

well the Poisson distribution with one parameter. The general-

ized Pareto distribution (GPD) with two parameters outperforms 

the log-normal fit with respect to the tail-related risk measures, 

e.g., VaR, ES, and EAS. GPD allows easy estimation of the high 

quantiles and the maximum probable loss from the data. The 

threshold value can be used as reference in decision making for 

setting grant-in-cash relief. We believe that, given different con-

fidence intervals, these high-quantile measures can provide use-

ful information in reviewing the applicable loss compensation 

regulations and for adjusting natural disaster relief budget plans 

or insurance pricing on the non-insurance plan.
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1. Introduction

Many countries are regularly hit by natural disasters 
that cause significant damage to crops. Rice is the 
world’s most important staple food crop, and it feeds 
more than half of the world population (Luo et al. 
1998; Bakker et al. 2005; Aggarwal et al. 2006; Stor-
key and Cussans 2007; Lai 2010). World rice pro-
duction in 2007 was estimated to be 652 million tons, 
of which 90% came from Asia (FAO 2008). Major 
studies show that extreme weather events have a great  
effect on rice production (Lansigan, De los Santos, 
and Coladilla 2000; Yamamoto and Iwaya 2006). 
Among these weather phenomena, typhoons or tropical 
cyclones are the most destructive. Catastrophic events 
are not frequent but cause massive destruction. The 
annual aggregate rice damage caused by typhoons  
can be ascribed to a combination of two random vari-
ables: the annual frequency and the severity of losses 
when they occur. Based on fitted annual frequency 
and loss distributions, this paper attempts to develop a 
collective risk model1 (Klugman, Panjer, and Willmot 
2004) for typhoon damage to rice. The current task is  
to develop appropriate annual frequency and loss distri-
butions for typhoon losses. Moreover, in actuarial sci-
ence, the aggregate claims are obtained by summing up 
all the policies in the portfolio (Boland 2007). To make 
the collective risk model tractable, major studies usu-
ally make two fundamental assumptions: (1) the indi-
vidual claim amounts are independent and identically 
distributed (i.i.d.) random variables, and (2) the random 
variables of the number of claims and the individual 
claim amounts are mutually independent (Bowers et al. 
1997). As typhoons generally strike areas only once, 
they are not correlated to one another. In this paper, we 
will try to test statistically the independence of annual 
frequency and severity relating to rice-loss data. Most 
empirical studies find sufficient evidence of skewness  

and kurtosis in their yield data (Babcock and Hennessy 
1996; Hennessy, Babcock, and Hayes 1997; Coble et al.  
1996; Nelson and Preckel 1989). As a consequence, 
evidential support for abnormality of crop yield has 
become a major issue in agricultural economics (Just 
and Weninger 1999; Atwood, Shaik, and Watts 2002; 
Atwood, Shaik, and Watts 2003). The fitted loss dis-
tribution shows more skewness because losses in crop 
yields are related to natural disasters. In most countries 
with developed crop insurance programs, insured-loss 
calculation in the form of excess probability curves can 
enable risk managers to decide high excess loss layers 
for private or governmental crop risk-management and 
insurance programs (Rosenzweig et al. 2002). Estimat-
ing the number of exposures needed to exceed the eco-
nomic damage threshold from a model (Hansen 2004;  
Muralidharan and Pasalu 2006) would be more accu-
rate, and the choices of the threshold value above 
which losses are retained by government also become 
a critical decision (Hansen 2004; Larsson 2005). How-
ever, the extreme value theory (EVT) methods and  
the generalized Pareto (GP) distribution (GPD) (McNeil 
1997; McNeil and Saladin 1997; Cebrian, Denuit, 
and Lambert 2003; Brabson and Palutikof 2000; 
Embrechts, Resnick, and Samorodnitsky 1999) have 
been considered in the study of trends of the extreme 
losses to get an appropriate assessment and decision.

In the past three decades, typhoons caused losses 
of up to USD 67.333 billion to Taiwan’s crops. Over 
a 37-year period, approximately two-thirds (63%) 
of all natural disaster damage to rice was caused by 
typhoons. On average, each typhoon causes rice dam-
age estimated at USD 5.57 million (COA 2013). To 
ease the effect of natural disasters on agriculture and 
to the farmers, many countries have implemented 
agriculture insurance plans or set up disaster relief 
systems. For example, Taiwan’s agricultural natural 
disaster assistance program (TANDAP) was approved 
and implemented in 1991. This program provides 
farmers with financial assistance, including cash 
relief, subsidies, and low-interest loans, to compen-
sate for yield loss caused by natural disasters. How-
ever, rice losses of farmers are actually higher than 

1A collective risk model represents the aggregate loss as a sum S of 
a random number N of individual losses (X1, . . . , XN). Therefore,  
S = X1 + . . . +  XN. Unless stated otherwise, assumption is made that 
all random variables are independent and that the Xjs have identical 
probability distributions.
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what is provided in the government budgets due to 
underestimation and budget limits. For example, 
the Council of Agriculture (COA)2 budgeted USD 
36.17 million for TANDAP annually, starting in 2004.  
This budget appears insufficient for specific years 
when huge agriculture losses are incurred. For exam-
ple, there was an estimated loss of USD 366.67 mil-
lion in 2007. Consequently, an accurate estimation 
of annual rice damage would not only be a critical 
task for TANDAP to budget compensation plans, but 
would also significantly affect its future research in 
agricultural risk-management and insurance plans.

Based on EVT, we attempt to fit these extreme losses 
using the peak-over-threshold (POT) approach and see 
how these extreme losses affect the tail behavior of 
the rice-loss distribution. This paper aims to esti-
mate the tail quantile risk measures using EVT and 
estimate the expected annual aggregate rice losses 
using a collective risk model. Its main objectives are: 
(1) to fit the annual frequency and severity distribu-
tions of rice-loss data; (2) to estimate the quantile risk 
measures, e.g., value-at-risk (VaR), expected shortfall 
(ES), and expected annual aggregate losses (EAAL) 
or expected aggregate losses (EAS), in the exam-
ple of extreme losses based on EVT modeling; and  
(3) to estimate the expected annual aggregate rice 
losses using a collective risk model. In addition, we 
know that the relationship between natural disasters  
and rice yields is a complex issue. This paper only 
discusses the risk analysis of a collective risk model 
for rice damage due to extreme events. Assessment 
of rice damage must be appropriately implemented 
in order to objectively account for morphological 
dev elopmental criteria brought about by technologi-
cal change over time. Finally, the results we obtained 
can be used in estimating the risk of rice damage due 
to flood, and our algorithm can be applied to other 
disasters and in other countries.

This paper is organized as follows. Section 2 sum-
marizes the basic theories concerning the independent 

test, the loss distribution fitting, the expected annual 
aggregate loss (EAAL) estimation, and the estimated 
quantile risk measures from extreme observations. 
Section 3 interprets the empirical results. Conclusions 
are drawn in Section 4.

2. Models and methods

For rice damage due to typhoons, we denote the 
annual loss frequency as N, the individual losses as 
Xjs, and the annual aggregate losses as S. Two hypoth-
eses are made: H1: N and (X1, X2, . . .) are independent 
random variables, and H2: X1, X2, . . . are i.i.d. random 
variables.

2.1. Independence of annual frequency 
and losses

To examine the independence of the annual fre-
quency and loss variables caused by every single 
typhoon, the N and Xjs data are summarized into an 
8 × 10 contingency table, with the row variable denot-
ing annual frequency and the column variable denoting 
severity. To understand these differences, categoriz-
ing the loss maps into major groups would be help-
ful. The loss frequency variables are classed into eight 
ordinal groups, from lowest to highest. The loss sever-
ity variables are categorized into 10 ordinal groups, 
i.e., from very small (10th percentile) to very large 
(90th percentile). As the two variables are ordinal, we 
use the Goodman and Kruskal’s gamma test for inde-
pendence distribution. Generalization of the Goodman 
and Kruskal’s gamma statistic3 g is used for the mea-
surement of the strength of dependence (association) 
between two categorical variables with ordered cate-
gories. The Goodman and Kruskal’s gamma statistic 
g ranges between -1 and 1. Values close to an abso-
lute value of one indicate a strong relationship between  
the two variables, whereas values close to zero indicate 
little or no relationship.

2The Council of Agriculture (COA) is the competent authority on the  
agricultural, forestry, fishery, animal husbandry and food affairs in Taiwan.

3Goodman and Kruskal’s gamma statistic is computed as 
C D

C D
γ =

−

+

( )

( )
,

where C is the concordant pairs and D is discordant pairs in the contin-
gency table (Agresti 1996).
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where Ek is the expected number of counts. The num-
ber of degrees of freedom for this test statistics is given 
by d = (# of cells) - (# of estimated parameters) - 1.

The null hypothesis is that the underlying distri-
bution is the Poisson distribution. If the value of  
Q is less than c2

d,a, where a is the significance level 
of the test, we do not reject the null hypothesis 
(Klugman et al. 2004).

To further analyze the models, we also present the 
probability difference graph to determine how well 
the theoretical distribution fits with the observed data 
and compare the goodness-of-fit of several fitted dis-
tributions. The probability difference graph is a plot 
of the difference between the empirical and the theo-
retical cumulative distribution functions (CDFs).

Diff x F x F xn( ) ( ) ( )= − (3)

where F x
n

xn [ ]( ) = × ≤1
Number of observations

denotes the empirical CDF of the data and F(x) is 
the theoretical (fitted) CDF.

2.3. Loss distribution

Several different distributions can often fit to the 
same data set.

2.3.1. classical loss distribution
Since the histogram of rice losses indicates a right-

skewed data set, the recommended right-skewed dis-
tribution such as gamma, log-normal, and log-gamma 
distributions will be tested in this paper. To estimate the  
parameters of loss distributions, the maximum like li-
hood estimation is used. Furthermore, the Kolmogorov- 
Smirnov (K–S) statistic is then computed as a quantita-
tive measure of the overall fit of the selected distribution  
to the empirical distribution. The K–S test has the advan- 
tage of making no assumption about the distribution 
of data. K–S is based on the largest vertical difference 
between the theoretical and the empirical cumulative  
distribution function. The detailed process is as follows:

Let X = (X1, . . . , Xn) be a random sample from some 
distribution with the cumulative distribution function 

2.2. Annual frequency distribution

Frequency distribution is usually represented by 
one of the standard discrete statistical distributions. 
We now consider that two frequency models exist in 
this paper: the Poisson distribution and the binomial 
distribution. The Poisson distribution is one of the 
most common distribution methods used for mod-
eling loss/claim frequency (Klugman, Panjer, and 
Willmot 2004; Promislow 2006). The Poisson distri-
bution requires only a single parameter. To estimate 
the parameter of annual frequency, the maximum like-
lihood estimation (MLE) is used. Let nk denote the 
number of years in which a frequency of exactly k 
losses occurred. The maximum likelihood estimate 
of the Poisson parameter is

kn

n
kk∑λ =

∧
=

∞

, (1)0

and this may be estimated by the sample mean of 
3.324. Note that the maximum sample frequency 
is 7 and this would be the lowest choice for n. If n 
is known, then only p needs to be estimated. Vari-
ous combinations of estimates of n and p can be 
tried subject to the condition that n × p = 3.324, the 
sample mean.

The binomial distribution is another counting dis-
tribution that arises naturally and frequently in claim 
number (or loss number) modeling, as the mean of 
sample exceeds the variance (Klugman Panjer, and 
Willmot 2004). The binomial distribution has two 
parameters, n and p, where n is the number of trials 
and p is the probability of a success from each of the 
n independent trials. The binomial distribution can 
be calculated from the formula as P(X - x) = nCx p x 

(1 - p)(n - x), x = 0, 1, 2, . . . , n. Note that we say X fol-
lows a binomial distribution with parameters, n and p.

The chi-square statistic of goodness-of-fit test is 
computed as a quantitative measure for the overall 
fit of the selected distribution. The test statistic is

Q
n E

E
k k

kk
∑ ( )

= −
=

∞

, (2)
2

0
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2.3.3. Generalized Pareto distribution (GPd)
In some instances, the attendant exposures exceeded 

the expectations of local specialists and government 
authorities in managing extreme loss. Extreme value 
with GPD plays an increasingly important role in natu-
ral disaster analysis. If we consider an unknown dis-
tribution function F of a random variable X, we will 
be interested in estimating the distribution function Fu 
of variable x above a certain threshold u. The distribu-
tion function Fu is called conditional excess distribu-
tion function and is defined as

F y P X u y X u y x uu F( ) ( )= − ≤ > ≤ ≤ −, 0 , (5)

where X is the random variable, u is the given thresh-
old, y = x - u are the excesses, and xF is the right end-
point of F. We verify that Fu can be written as

) )( ( )
)

) )
)

(
(

( (
(

= + −
−

= −
−1 1

. (6)F y
F u y F u

F u

F x F u

F u
u

Pickands (1975) and Balkema and de Haan (1974) 
suggest that, for a large class of underlying distribu-
tion function F, the conditional excess distribution 
function is Fu(y). When the value of the threshold is 
large, the function is well approximated by

F y G y uu( ) ( )≈ → ∞ξ σ ,,

where

G y y

e y

( ) = − + ξ
σ





 ξ ≠

− ξ =






ξ σ

− σ

− ξ

1 1 if 0

1 if 0
(7),

/

1/

for y ∈ [0, (xF - u)], if x ≥ 0 and for ∈ − σ
ξ







y 0, ,
 

if x < 0. Gx,s is the so-called GPD, with s > 0 as 
the scale parameter and x as the shape parameter. 
Here, x is the shape parameter that determines the 
speed at which the tail disappears. This distribution is 
defined as the GPD because it subsumes other known 

[Fn(x), F(x)]. The K–S statistic (K ) is based on the 
largest vertical difference between the theoretical and 
the empirical cumulative distribution function (Bain 
and Engelhardt 1991).

K F x
i

n

i

n
F x

i n
i i( )( ) ( )= − − −

≤ ≤
max

1
, . (4)

1

If the test statistic, K, is greater than the critical value 
obtained from a table, we reject the data following 
the specified distribution.

For testing the appropriateness of the selected 
dis tribution, a Q–Q plot is used for comparing the  
estimated quantiles of the fitted distribution with 
the quantiles of a theoretical distribution. To fur-
ther analyze the models, we also present the prob-
ability difference graph to determine how well 
the theoretical distribution fits the observed data 
and compare the goodness-of-fit for several fitted 
distributions.

2.3.2. extreme value distribution
The Q–Q plot is a strong evidence of deviation 

from a straight line at the large observations, even 
though K–S tests suggest the selected models fit 
well. This inappropriate fitting of tail behavior of 
loss distribution suggests using extreme value dis-
tribution for fitting. Estimation of an extreme loss 
severity distribution from historical data is an impor-
tant activity in risk assessment. EVT provides meth-
ods for statistically quantifying such events and their 
consequences (Embrechts, Kuppelberg, and Mikosh 
1997; Reiss and Thomas 1997; De Haan and Ferreira 
2006). Generally, two related ways of identifying 
extremes in real data are used. Two models of the 
generalized extreme value distribution (GEVD) and 
the generalized Pareto distribution (GPD) are intro-
duced that are central for the statistical analysis of 
maxima or minima and of excess over a higher or 
lower threshold. It is critically important to deter-
mine if using GPD from EVT results in an adequate 
fit. In the following sections, the fundamental theo-
retical results underlying the block maxima and the 
threshold method are summarized.
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In practice, the EVT estimators can be derived as 
follows. We propose to evaluate VaR at the 1% confi-
dence level. We then choose a cutoff point u such that 
the right tail contains a small percentage of the data. 
The EVT distribution then provides a parametric dis-
tribution of the tails above this level. We first need to 
use the actual data to compute the ratio of observations 
in the tail beyond u or Nu/n, consistent with the unity 
sum of the tail probability. Given these parameters, the 
tail distribution and density functions are, respectively,

F x
N

n
xu( ) ( )( ) = − + ξ

σ
− µ





− ξ

1 1 (10)
1/

f x
N

n
xu ( )( ) ( )( ) =

σ
+ ξ

σ
− µ





− ξ −1
1 . (11)

(1/ ˆ ) 1

The quantile at the qth level of confidence is 
obtained by setting the cumulative distribution as 
Fu(y) = q, where y = x - u, and solving for x, which 
yields

VaR u
n

N
qq

u

( )= + σ
ξ





 −





−












∧
− ξˆ

ˆ 1 1 , (12)

ˆ

where Nu is the number of losses above the threshold 
u, n is the total number of losses, and q is a given 
probability. This equation provides a quantile estima-
tor of VaR based not only on the data but also on our 
knowledge of the parametric distribution of tails. Such 
an estimator has a lower estimation error than the ordi-
nary sample quantile, a nonparametric method (Jorion 
2007). Furthermore, we can obtain the ES estimate or 
the average beyond VaR using the following formula 
(Jorion 2007):

E S
VaR u

q

q( ) =
− ξ

+ σ − ξ
− ξ

∧
∧

1 ˆ
ˆ ˆ

1 ˆ . (13)

2.3.5. eAAL or eAs estimation
Let N denote the annual loss frequency of rice dam-

age due to typhoon in a given time period. Note that 

distributions, including the Pareto and normal distri-
butions, as special examples. The normal distribution 
corresponds to x = 0, where the tails in the example 
disappear at an exponential speed (Jorion 2007). By 
supposing x = u + y, the GPD can also be expressed 
as a function of x, i.e., Gx,s(x) = 1 - (1 + x(x - u)/s)-1/x.

2.3.4. tail-related risk measures of extreme 
value distribution: Var and es of GPd

Measures, such as skewness and kurtosis, can be 
used to quantify the risk not adequately described by 
variance alone (Rosenberg and Schuermann 2005). 
An alternative approach is to examine the percen-
tiles of the distribution to provide useful information 
in the high quantiles of the loss distribution. Some of 
the most frequent questions concerning risk manage-
ment in many fields involve extreme quantile estima-
tion, which determines the value of a given variable 
that exceeds a given probability. Typical examples of 
such measures are VaR, ES, and EAAL. A measure 
that provides useful information for risk manage-
ment is the high quantile of the distribution of losses. 
VaR is broadly defined as a quantile of the distribu-
tion of returns or losses of the concerned portfolio 
(Jorion 2007). We let 0.95 ≤ q < 1 as an example. 
VaR is the qth high quantile of distribution F:

F qq ( )= −VaR (8)1

where F-1 is the inverse of F.

Artzner et al. (1997) demonstrated that VaR is not a 
coherent risk measure. To remedy the problems inher-
ent in VaR, they proposed the use of ES as an alterna-
tive, a risk measure using conditional tail expectation, 
also called tail VaR. ES is the expected value of the 
loss in those examples where it exceeds the predefined 
confidence level. Thus, ES is equal to the average loss 
rice crops will suffer under the example of extreme 
situations where the losses exceed the predefined con-
fidence level. ES is the expected loss size given that 
VaR is the threshold value level

E X Xq i q( )( ) = >E S VaR . (9)
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to discuss the difference between the values of VaR 
and ES in the tail-related risk measures of the GPD 
model, the EAAL or EAS estimation, and the analy-
sis of the annual aggregate loss based on a selected 
distribution. Note that from E(AS) and V(AS), we can 
consider different types of the simplest premium cal-
culation principles with the tail-related risk measures, 
characterized by mean of some elementary properties, 
and some other principles will be given a statistical 
justification.

3. Results

3.1. Data

The data used in the current work are obtained 
from Taiwan’s Agriculture Yearbook, provided by the 
Council of Agriculture (COA) of Taiwan. Adjusting 
for inflation, 123 instances of estimated rice losses 
caused by typhoons from 1971 to 2007 are summarized 
in Table 1 and shown in Figure 1. The sample mean 
and variance of the frequency distribution are 3.3 and 
2.3, respectively. The sample mean and standard devia-
tion of the severity distribution are approximately USD 
5.57 million and USD 12.59 million, respectively. On 
average, 3.3 typhoons hit Taiwan’s rice crops annu-
ally, and the average rice loss in this small country 
caused by each typhoon is USD 5.57 million. Dur-
ing the preceding 37 years, typhoons hit Taiwan’s 
agriculture, causing tremendous losses of over USD 
33.33 million in four years: 1975, 1986, 1998, and 
2007. Moreover, eight years incurred extreme rice 
losses of over USD 16.67 million. The coefficients of 
skewness and kurtosis are 4.2 and 20.7, respectively. 

X1 denotes the first loss, X2 as the second loss, and 
so on. In the collective risk model, the random sum 
(Bowers et al. 1997) represents the aggregate losses 
generated by the portfolio for the period under study.

S XN j
j

N

∑=
=

. (14)
1

The number of losses N is a random variable and is 
associated with the frequency of loss. The individual 
losses X1, X2, . . . are also random variables and are 
said to measure the severity of losses. In the collec-
tive risk model, we model the annual aggregate rice 
loss S as a compound distribution in the form S = X1 + 
X2 + . . . + XN. When N is a Poisson distribution, S has 
a compound Poisson distribution (Promislow 2006; 
Boland 2007). The mean and variance of the aggregate 
losses (AS) are well known by actuaries. The moment 
equations for aggregate losses are expressed as

E AS E E S NN (15)( ) ( )( )=

and

V AS Var E S N E V S NN N . (16)( ) ( )( ) ( )( )= +

We will calculate the independence test of the 
annual frequency and losses, annual frequency distri-
bution fitting, and classical and extreme loss distribu-
tion fittings associated to the different distributions, 
i.e., GEVD and GPD. Our purpose is to determine the 
best-fitting distribution of crop damage due to extreme 
events in a collective risk model. In addition, we aim 

Table 1. Taiwan’s 123 instances of rice losses caused by typhoons, 1971–2007

Panel A: Frequency of Loss

Yearly frequency 0 1 2 3 4 5 6 7 Total

Year numbers of loss 1 3 7 9 9 6 1 1 37

Panel B: Severity of Loss (USD million)

mean standard 
deviation

minimum first 
quartile

second 
quartile

third 
quartile

maximum skewness excess 
kurtosis

5.57 12.59 0.0006 0.44 0.67 7.501 84.05 4.2 20.7

Source: Taiwan Agricultural Yearbook, COA, Executive Yuan, Taiwan 2013
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frequency. The Goodman and Kruskal’s gamma sta-
tistic in the previous example will be close to one. In 
the present example, ĝ  is 0.07, with a corresponding 
p value of 0.665, indicating a very weak relationship 
between the two variables. We do not reject the fact 
that N and X1 are independent random variables. We 
further check the independence between N and X2. 
The Goodman and Kruskal’s gamma statistic is 0.066, 
with a corresponding p value of 0.684. Consequently, 
we do not reject the fact that the annual frequency and 
severity are independent random variables.

3.3. Results of the annual frequency 
distribution fitting

Panel A of Table 3 shows the annual frequency 
dis tribution of the 123 typhoons observed during 
the 37-year period in 1971–2007. The sample mean 
and variance of this frequency distribution are 3.324 
and 2.281, respectively. Figure 2 shows no particular 
trend of the annual frequency. The maximum likeli-
hood estimate of the Poisson parameter l̂  is 3.324. 
Various combinations of the condition where n × p = 
E(N) are also considered. We interpret this given n as 
the theoretical maximum number of typhoons during 
a year. Panel A of Table 3 shows the observed fre-
quencies against a set of fitted frequencies based on 
the Poisson distribution (null hypothesis). The param-
eter estimation and chi-square goodness-of-fit test are 
also given. However, some of the expected frequen-
cies are less than five. For the chi-square approxima-
tion to be valid, the expected frequency should be at 

Consequently, the Jarque–Bera test shows a corre-
sponding p value of 0.0000 from 1971, which means 
that the fitted loss data were not normally distributed. 
Figure 1 shows the annual frequency and the rice 
damage caused by typhoons. This chart shows no par-
ticular pattern in the loss series, and the annual fre-
quency and the severity of rice damage are not related.

3.2. Results of independence test  
of annual frequency and losses

In Table 2, if “increasing loss frequency N leads 
to increasing levels of loss severity Xjs,” a tendency 
for large losses is predicted to occur with high annual 
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Figure 1. Taiwan’s 123 instances of rice losses caused by typhoons in 1971–2007

Table 2. Independence test between N and X1

Annual 
Frequency

Lossa

Ia II III IV V VI VII VIII IX X Total

0 1 0 0 0 0 0 0 0 0 0  1

1 1 0 0 0 0 0 0 1 1 0  3

2 1 0 1 1 0 1 1 0 2 0  7

3 0 1 2 2 0 0 2 1 0 1  9

4 1 1 0 0 3 1 1 0 1 1  9

5 0 1 0 1 0 1 0 1 0 2  6

6 0 1 0 0 0 0 0 0 0 0  1

7 0 0 0 0 1 0 0 0 0 0  1

Total 4 4 3 4 4 3 4 3 4 4 37

Goodman and Kruskal’s gamma statistic is 0.07 (p value = 0.665)
aI: denotes the loss of less than the 10th percentile of the loss data.
II: denotes the loss between the 10th percentile and 20th percentile of the 
loss data.
III: denotes the loss between the 20th percentile and 30th percentile of the 
loss data, and so on.
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Table 3. Chi-square goodness-of-fit test

Panel A: Annual Frequency

Year 
Frequency 
N

Observed 
Frequency

Theoretical Frequency

Poisson 
l̂ = 3.324

Binomial Distribution

n̂ = 7 n̂ = 8 n̂ = 9

0  1 1.3 0.4 0.5 0.5

1  3 4.7 2.7 2.9 3.1

2  7 7.4 7.1 7.2 7.2

3  9 8.2 10.6 10.1 9.8

4  9 6.8 9.4 9 8.7

5  6 4.5 5.1 5.1 5.1

6  1 2.5 1.5 1.8 2.0

7  1 1.9 0.2 0.4 0.6

Total 37 37 37 37 37

Panel B: Some cells are combined to obtain at least five (expected value) for the chi-square test to be valid.

 
N

Observed 
Frequency

Poisson 
l̂ = 3.324

N
Observed 
Frequency

Binomial Distribution

1 and less  4 5.7 n̂ = 7 n̂ = 8 n̂ = 9

2  7 7.4 2 and less 11 10.2 10.6 10.8

3  9 8.2 3  9 10.6 10.1 9.8

4  9 6.8 4  9 9.4 9.0 8.7

5 and over  8 8.9 5 and over  8 6.8 7.3 7.7

Total 37 37 Total 37 37 37 37

Chi-square statistics c2 1.4150 Chi-square statistics c2 0.5525 0.218 0.1031

p value 0.7020 p value 0.4573 0.6406 0.7481

Figure 2. Annual frequency (1971–2007)
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3.4. Results of loss distribution fitting

In Panel B of Table 1, the sample mean and standard 
deviation of the severity distribution are approximate  
USD 5.57 million and USD 12.59 million, respectively.  
The inter-quartile range is large (about USD 5.33 mil-
lion), and the data contain a significant number of 
very high losses (the maximum loss observed is USD 
84.05 million). The distribution of rice losses due 
to typhoons is considerably skewed to the right (the 
skewness coefficient is equal to 4.2). The histogram  
of losses shows a long-tailed behavior of the under- 
lying data in Figure 4. The Jarque–Bera test applied  
to rice-loss data leads to a clear rejection of the null 

least five. Therefore, we need to combine some cells 
in the tails in Panel B of Table 3. The Poisson distribu-
tion can approximate the observed frequency distribu-
tion reasonably well. Moreover, the Poisson parameter 
l̂ = 3.324, and the chi-square statistic c2

3 is 1.415 with 
a corresponding p value of 0.7020, suggesting a good 
fit for the Poisson distribution.

To examine the appropriateness of the fitted dis-
tribution, a probability difference graph is used to 
compare the goodness-of-fit of the two fitted distri-
butions. Figure 3 shows that the Poisson distribu-
tion with parameter l̂  = 3.3 is still better than the 
binomial distribution with two parameters n̂ = 7 
and p̂  = 0.47 in the fitted model.
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Figure 3. Probability difference graph of the comparison between the Poisson(3.3) and the 
fitted binomial(7, 0.47) distributions

Figure 4. Histogram of losses
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log-gamma distribution. Therefore, we conclude that 
both log-normal and log-gamma distributions fit the 
sample data well enough to be acceptable models, but 
the gamma distribution does not.

The log-normal distribution fits the sample data 
and has a mean of USD 13.17 million and a standard 
deviation of USD 218.40 million. The probability of 
exceeding USD 3.33 million is 0.27, clearly too low 
compared with the probability of 0.32, or 39 events out  
of 123. This result indicates that the log-normal dis-
tribution does not fit the tail behavior well, although 
it fits the whole distribution well. Figure 5 shows 
the Q–Q plot of the log-normal and log-gamma fits. 
If the sample observations match the theoretical one, 
the plot will be on a straight line. Both plots show 

hypothesis of normality, with a corresponding p value 
of zero. Hence, we consider a right-skewed distri-
bution set, and the recommended right-skewed distri-
bution, such as gamma, log-normal, and log-gamma 
distributions, will be tested in the next context.

3.5. Classical loss distribution fitting

Table 4 summarizes the maximum-likelihood esti-
mation (MLE.) parameters of loss distribution. The 
goodness-of-fit test of the log-normal, log-gamma, 
and gamma distributions is also included. The K–S 
goodness-of-fit test of the log-normal distribution 
with estimated location parameter µ̂  = 10.079 and 
estimated scale parameter ŝ  = 2.37 does not reject 
the null hypothesis. A similar conclusion favors the 

Table 4. MLE and goodness-of-fit for loss distributions

Distribution Probability Density Function MLE

Kolmogorov–Smirnov

Statistics p value
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Figure 5. Q-Q plot of log-normal (left) and log-gamma (right) distributions
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to the losses of over USD 0.97 million and indicates 
that a GPD may provide a reasonable fit to the losses 
in excess of this threshold value. Hence, our present 
analysis is based on a set of 56 largest rice losses 
over a threshold value of USD 0.96 million. Then, we 
have a two-parameter representation of GPD: scale ŝ 
(132,349) and shape x̂  (0.4625). For typical financial 
data, x > 0 implies a heavy tail or a tail that disappears 
more slowly than the normal. Note that the size of the 
shape parameter is the most important. Higher shape 
parameters can be generated, which results in a thicker 
tail and more losses. It is an important key issue in 
comparing the fitted shape parameter with the change 
in threshold. In this case, the K–S test statistic is 0.0518 
with a corresponding p value of 0.9964, suggesting 
that GPD is a good fit for the 56 extreme losses. The 
data, MLE, and K–S test are summarized in Table 5. In  
Figure 7, the Q–Q plot shows an approximate linearity,  
which indicates that GPD is a correct model for the 

theoretical models that do not fit well at the tail part 
of the loss distribution. More attention is required for 
the tail (extreme values) of the loss distribution.

3.6. Extreme value distribution fitting

We are interested in the severe losses and now try to 
capture the behavior of the loss tail using the extreme 
value distribution model. We analyze the tail region, 
instead of the center region, of the distribution of 
rice damage, as suitable estimates for the tails of loss 
severity distributions are essential for risk financing 
or positioning of high excess loss layers in private or 
government insurance and disaster risk-management 
programs (Rosenzweig et al. 2002). Hence, estimat-
ing the number of events that exceed the economic 
damage threshold from a model will be more accurate 
(Hansen 2004; Muralidharan and Pasalu 2006). The 
choice of the threshold value above which losses 
are insured or retained by the government also becomes 
a critical decision (Hansen 2004; Larsson 2005).

3.7. Results of GPD fitting

In Sections 3.4 and 3.5, the log-normal and log-
gamma distributions did not fit well through the entire 
data, particularly at the tail of the loss distribution. The 
mean excess plot is sometimes used to identify a likely 
loss distribution. Figure 6 shows the mean excess func-
tion for loss estimations. The linear trend line is fitted 

Figure 6. Mean excess plot of loss distribution
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Table 5. Summary statistics: GPD in USD millions

Data Summary Statistics MLE and K–S Goodness-of-Fit Test

Sample size 56.00 Threshold µ̂ 0.96

Range 83.03 Scale ŝ 132,349

Mean 11.91 Shape x̂ 0.4625

Median 6.28 K–S statistics 0.0518

Standard 
deviation

16.63 p value 0.9964
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10.93 million will be USD 27.73 million. Referring to 
the relief threshold criteria of TANDAP, the criterion 
threshold for granted cash relief is USD 6 million, 
implying that the criterion threshold of the recent 
policy relieves severe damage to rice farmers with 
a probability of only about 0.15.

3.9. Results of the EAAL estimation

In previous sections, we concentrated on the risk 
measures of extreme rice losses caused by typhoons. 
In this section, we estimate the EAAL or EAS of 
rice damage due to typhoons using a collective risk 
model. Based on collective risk model views, aggre-
gate (total) losses as a compound distribution are a 
compound Poisson distribution in rice-loss data. We 
have two models for estimation in Table 7. Model I 
is a compound Poisson distribution with parameter 
l̂ = 3.3, where the losses are log-normal distribu-
tion with two parameters µ̂ = 10.079 and ŝ  = 2.37. 
Model II is a compound Poisson distribution with 
parameter l̂ = 3.3, where the losses are GPD with 
two parameters x̂ = 0.4625 and ŝ = 132,349. Table 7  
summarizes the annual aggregate losses based on  
a selected distribution. Model I has an EAAL of  
USD 43.5 million, larger than that of Model II (USD 
30.27 million), but Model II has a smaller variance. 
The log-normal distribution is 50 times the variance of 

56 extreme losses. In the next section, we will use 
GPD to calculate some risk-related measures, such 
as VaR, ES, and E(AS), which could be helpful as a 
reference for some disaster-assistance problems.

3.8. Tail-related risk measures of GPD: 
VaR and ES

Equations (12) and (13) provide a quantile estima-
tor of VaR based not only on the data but also on our 
knowledge of the parametric distribution of tails. Such 
an estimator has a lower estimation error than the ordi-
nary sample quantile, a nonparametric method (Jorion 
2007). The 90th, 95th, and 99th percentile of VaR and 
ES are shown in Table 6. These high-quantile mea-
sures can provide useful information to authorities and 
risk managers for checking applicable loss compen-
sation regulations and for adjusting a relief threshold 
or a natural disaster relief budget plan. For example, 
ES0.90 is computed as the average of the losses that 
exceed VaR0.90, i.e., we can have a rice loss of USD 
10.94 million with a 10% chance of a next typhoon 
damage to rice, and the expected loss exceeding USD 
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Figure 7. Q–Q plot of GPD.

Table 6. Point estimates of VaRq and ESq for the GPD model 
in USD millions

VaR0.9 VaR0.95 VaR0.99 E(S)0.9 E(S)0.95 E(S)0.99

10.94 18.31 47.20 27.73 41.45 95.19
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mation regarding the high quantiles of the loss distri-
butions. Typical examples of such measures, such as 
VaR, ES, and EAS or EAAL, were presented, which 
are useful to authorities and risk managers studying 
applicable loss compensation regulations and adjusting 
relief threshold or natural disaster relief budget plans. 
Overall, the analyses performed in these examples 
provide insight on several aspects of estimating rice 
losses. The conclusions are as follows. 

(1) The annual frequency of rice damage caused 
by typhoons is fitted well by the Poisson distribution 
with one parameter. The loss distribution of rice dam-
age caused by typhoons is fitted by log-normal distri-
bution with two parameters. However, the log-normal 
distribution badly fits the tail of rice-loss distribution. 
We suggest an alternative distribution called GPD to fit 
the losses with extreme values. GPD with two param-
eters outperforms the log-normal fit, especially at the 
tail behavior fitting. GPD allows easy estimation of the 
high quantiles and the maximum probable loss from 
the data. These loss distributions are useful for review-
ing loss compensation regulations and relief fund (non-
insurance project) applicability and can be used as a 
reference for planning future crop insurance. 

(2) The threshold value can be used as reference 
in decision making for setting grant-in-cash relief. 

(3) We consider tail-related risk measures, e.g., VaR, 
ES, and EAS, of GPD. Given different confidence 
intervals, these high-quantile measures can provide 
useful information in reviewing the applicable loss 
compensation regulations and for adjusting the relief 
threshold or natural disaster relief budget plans. 

(4) A compound Poisson distribution is appli-
cable for estimating annual aggregate rice losses. 
Obviously, expected loss is an important element that 
affects the retention ability of the non-insurance plan 

GP, leading to an incredible expectation of aggregate 
losses. For practical reasons, we consider Model II  
to be a reliable result. Compared with the annual 
budget (USD 36.17 million) of TANDAP, we find 
that the annual budget is insufficient for compensat-
ing the losses of farmers because the above expec-
tation is only for rice. Obviously, expected loss is 
an important element that affects retention ability for 
the non-insurance plan (relief program) and insurance 
pricing. Thus, accurate estimates of expected aggre-
gate losses can help authorities determine whether a 
cash relief program/risk premium of crop losses can 
meet the need for farmers or insurance coverage under 
extreme events.

4. Conclusion

Unusual climate and weather have caused substan-
tial damage to agricultural sectors in many areas of 
the world. These events cause very heavy losses. This 
paper discusses the independence between annual fre-
quency and severity due to individual typhoons. A col-
lective risk model is a feasible scheme for estimating 
the annual aggregate losses. This paper uses EVT, and 
the modeling strategy focuses on the POT approach 
to fit GPDs. Rice damage due to typhoons was cal-
culated because many observations can have a sub-
stantial effect on the heavy-tailed distribution using 
traditional estimation procedures. The loss distribu-
tion process is heavy-tailed, implying that it is also not 
normal; using normality results in large underestima-
tion of the threshold value of rice losses. In modeling 
a loss, a notable concern about the chances and sizes 
of extremely large losses is usually considered, in 
particular, the right tail of the distribution. Examining 
the distribution percentiles can provide useful infor- 

Table 7. Summary of annual aggregate losses based on a selected distribution (USD million)

Model

Annual Frequency (N) Loss (X) Annual Aggregate Loss (AS)

Distribution E(N) V(N) Distribution E(X) V(X) E(AS) V(AS)

I Poisson 3.3 3.3 Log-normal 13.17 0.14 × 1010 43.50 4,722,207

Il Poisson 3.3 3.3 GP  9.17 0.27 × 108 30.27 88,931,279
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(relief program) and insurance pricing. For further 
research, we can apply countrywide rice-loss data to 
examine the appropriate grant-in-cash relief thresh-
old for each typhoon event. Moreover, we can apply 
agricultural loss data to a model, including product 
loss (crop, forestry, livestock, and fishery), cultivated 
land loss, and irrigation facility loss, and some cli-
matic variables, such as precipitation, strength of 
typhoon, and maximum wind speed, to forecast the 
losses caused by typhoons. The results we obtained 
are useful in loss assessment of crops in decision 
making regarding national capacities for risk financ-
ing of major agricultural disasters and disaster risk-
management programs.
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