Meiho University Institutional Repository:Item 987654321/3787
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2878/3796 (76%)
造访人次 : 3956239      在线人数 : 1086
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于MUIR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.meiho.edu.tw/ir/handle/987654321/3787


    题名: Applying data mining techniques for discovering association rules
    作者: Huang, Mu-Jung
    Sung, Hsiu-Shu
    Hsieh, Tsu-Jen
    Wu, Ming-Cheng
    Chung, Shao-Hsi
    贡献者: 經營管理學院
    关键词: Data mining · association rule mining (ARM)
    chronic diseases
    日期: 2019
    上传时间: 2019-12-04T01:48:30Z (UTC)
    摘要: Data mining has become a hot research topic, and how to mine valuable knowledge from such huge volumes of data remains an open problem. Processing huge volumes of data presents a challenge to existing computation software and hardware. This study proposes a model using Association Rule Mining (ARM) which is a kind of data mining techniques for discovering association rules of chronic diseases from the enormous data that are collected continuously through health examination and medical treatment. This study makes three critical contributions: (1) it suggests a systematical model of exploring huge volumes of data using ARM, (2) it shows that helpful implicit rules are discovered through data mining techniques, and (3) the results proved that the proposed model can act as an expert system for discovering useful knowledge from huge volumes of data for the references of doctors and patients to the specific chronic diseases prognosis and treatments.
    显示于类别:[企業管理系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Applying data mining techniques for discovering association rules.pdf491KbAdobe PDF0检视/开启


    在MUIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈